3.286 \(\int \frac{x^4 (d^2-e^2 x^2)^p}{(d+e x)^3} \, dx\)

Optimal. Leaf size=220 \[ \frac{2 (p+8) x^5 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \, _2F_1\left (\frac{5}{2},3-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^3 (2 p+1)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{p-2}}{2 p+1}-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{p-2}}{e^5 (2-p)}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{p-1}}{2 e^5 (1-p)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^p}{e^5 p}-\frac{\left (d^2-e^2 x^2\right )^{p+1}}{2 e^5 (p+1)} \]

[Out]

(-2*d^6*(d^2 - e^2*x^2)^(-2 + p))/(e^5*(2 - p)) - (3*d*x^5*(d^2 - e^2*x^2)^(-2 + p))/(1 + 2*p) + (9*d^4*(d^2 -
 e^2*x^2)^(-1 + p))/(2*e^5*(1 - p)) + (3*d^2*(d^2 - e^2*x^2)^p)/(e^5*p) - (d^2 - e^2*x^2)^(1 + p)/(2*e^5*(1 +
p)) + (2*(8 + p)*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, 3 - p, 7/2, (e^2*x^2)/d^2])/(5*d^3*(1 + 2*p)*(1
- (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Rubi [A]  time = 0.229109, antiderivative size = 220, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {852, 1652, 459, 365, 364, 446, 77} \[ \frac{2 (p+8) x^5 \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \left (d^2-e^2 x^2\right )^p \, _2F_1\left (\frac{5}{2},3-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^3 (2 p+1)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{p-2}}{2 p+1}-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{p-2}}{e^5 (2-p)}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{p-1}}{2 e^5 (1-p)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^p}{e^5 p}-\frac{\left (d^2-e^2 x^2\right )^{p+1}}{2 e^5 (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(x^4*(d^2 - e^2*x^2)^p)/(d + e*x)^3,x]

[Out]

(-2*d^6*(d^2 - e^2*x^2)^(-2 + p))/(e^5*(2 - p)) - (3*d*x^5*(d^2 - e^2*x^2)^(-2 + p))/(1 + 2*p) + (9*d^4*(d^2 -
 e^2*x^2)^(-1 + p))/(2*e^5*(1 - p)) + (3*d^2*(d^2 - e^2*x^2)^p)/(e^5*p) - (d^2 - e^2*x^2)^(1 + p)/(2*e^5*(1 +
p)) + (2*(8 + p)*x^5*(d^2 - e^2*x^2)^p*Hypergeometric2F1[5/2, 3 - p, 7/2, (e^2*x^2)/d^2])/(5*d^3*(1 + 2*p)*(1
- (e^2*x^2)/d^2)^p)

Rule 852

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^(2*m)/a
^m, Int[((f + g*x)^n*(a + c*x^2)^(m + p))/(d - e*x)^m, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && NeQ[e*f
 - d*g, 0] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && EqQ[f, 0] && ILtQ[m, -1] &&  !(IGtQ[n, 0] && ILtQ[m +
n, 0] &&  !GtQ[p, 1])

Rule 1652

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] &&  !PolyQ[Pq, x^2] && IGtQ[m, -2] &&  !
IntegerQ[2*p]

Rule 459

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(b*e*(m + n*(p + 1) + 1)), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 365

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])
/(1 + (b*x^n)/a)^FracPart[p], Int[(c*x)^m*(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{x^4 \left (d^2-e^2 x^2\right )^p}{(d+e x)^3} \, dx &=\int x^4 (d-e x)^3 \left (d^2-e^2 x^2\right )^{-3+p} \, dx\\ &=\int x^4 \left (d^2-e^2 x^2\right )^{-3+p} \left (d^3+3 d e^2 x^2\right ) \, dx+\int x^5 \left (d^2-e^2 x^2\right )^{-3+p} \left (-3 d^2 e-e^3 x^2\right ) \, dx\\ &=-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{-2+p}}{1+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int x^2 \left (d^2-e^2 x\right )^{-3+p} \left (-3 d^2 e-e^3 x\right ) \, dx,x,x^2\right )+\frac{\left (2 d^3 (8+p)\right ) \int x^4 \left (d^2-e^2 x^2\right )^{-3+p} \, dx}{1+2 p}\\ &=-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{-2+p}}{1+2 p}+\frac{1}{2} \operatorname{Subst}\left (\int \left (-\frac{4 d^6 \left (d^2-e^2 x\right )^{-3+p}}{e^3}+\frac{9 d^4 \left (d^2-e^2 x\right )^{-2+p}}{e^3}-\frac{6 d^2 \left (d^2-e^2 x\right )^{-1+p}}{e^3}+\frac{\left (d^2-e^2 x\right )^p}{e^3}\right ) \, dx,x,x^2\right )+\frac{\left (2 (8+p) \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int x^4 \left (1-\frac{e^2 x^2}{d^2}\right )^{-3+p} \, dx}{d^3 (1+2 p)}\\ &=-\frac{2 d^6 \left (d^2-e^2 x^2\right )^{-2+p}}{e^5 (2-p)}-\frac{3 d x^5 \left (d^2-e^2 x^2\right )^{-2+p}}{1+2 p}+\frac{9 d^4 \left (d^2-e^2 x^2\right )^{-1+p}}{2 e^5 (1-p)}+\frac{3 d^2 \left (d^2-e^2 x^2\right )^p}{e^5 p}-\frac{\left (d^2-e^2 x^2\right )^{1+p}}{2 e^5 (1+p)}+\frac{2 (8+p) x^5 \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{5}{2},3-p;\frac{7}{2};\frac{e^2 x^2}{d^2}\right )}{5 d^3 (1+2 p)}\\ \end{align*}

Mathematica [C]  time = 0.146326, size = 66, normalized size = 0.3 \[ \frac{x^5 (d-e x)^p (d+e x)^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} F_1\left (5;-p,3-p;6;\frac{e x}{d},-\frac{e x}{d}\right )}{5 d^3} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(x^4*(d^2 - e^2*x^2)^p)/(d + e*x)^3,x]

[Out]

(x^5*(d - e*x)^p*(d + e*x)^p*AppellF1[5, -p, 3 - p, 6, (e*x)/d, -((e*x)/d)])/(5*d^3*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Maple [F]  time = 0.698, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{4} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}}{ \left ( ex+d \right ) ^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(-e^2*x^2+d^2)^p/(e*x+d)^3,x)

[Out]

int(x^4*(-e^2*x^2+d^2)^p/(e*x+d)^3,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{4}}{{\left (e x + d\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-e^2*x^2+d^2)^p/(e*x+d)^3,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p*x^4/(e*x + d)^3, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{4}}{e^{3} x^{3} + 3 \, d e^{2} x^{2} + 3 \, d^{2} e x + d^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-e^2*x^2+d^2)^p/(e*x+d)^3,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p*x^4/(e^3*x^3 + 3*d*e^2*x^2 + 3*d^2*e*x + d^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{4} \left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{\left (d + e x\right )^{3}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(-e**2*x**2+d**2)**p/(e*x+d)**3,x)

[Out]

Integral(x**4*(-(-d + e*x)*(d + e*x))**p/(d + e*x)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p} x^{4}}{{\left (e x + d\right )}^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(-e^2*x^2+d^2)^p/(e*x+d)^3,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p*x^4/(e*x + d)^3, x)